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Motivation
Magnetic Tunnel Junctions (MTJs) with Perpendicular

Magnetic Anisotropy (PMA) have recently brought a

significant attention in view of application as high-

density non-volatile magnetic random access memory

due to their possible low critical current density, good

thermal stability and downscalable junction size.
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Step 1: Samples preparation

• Buffer (a) Ta 5 / Ru 10 / Ta 3 : the thickest dead layer, the

weakest texture, the smallest roughness and MOKE images

with one large domain

• Buffer (c) Ta 5 / Ru 20 / Ta 5 : the thinnest magnetically dead

layer, the strongest texture, the biggest roughness and irregular

domain images

• Buffer (b) Ta 5 / Ru 10 / Ta 10 : intermediate properties

between the other two

Fe60Co20B20-based structures using a Singulus

Timaris cluster tool system
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Buffer (a) free layer Hk=1010 Oe, reference layer Hk=5620 Oe

Buffer (c) free layer Hk=920 Oe, reference layer Hk=5330 Oe

Step 4: Nanostructurization and CIMS

Summary and conclusions

VSM measurements of anisotropy fields

• Buffer (a) has larger anistropy fields than buffer (c)

• Critical current - buffer (a) slightly better than buffer (c)

• Thermal stability - two-fold difference in favour of buffer (a)

• Difference in damping: 44% greater for buffer (c)

• We conclude that the difference in damping factors compensates

for the difference in the switching barrier heights. As a result, by

adjusting buffer characteristics one can obtain a significant increase

in thermal stability factors while keeping the critical current values at

a similar level.
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AFM topography measurements

Step 3: Magnetic properties
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exp. data fitting  FWHM

(a)        4.66°

(b)        4.63°

(c)        3.72°
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exp. data fitting  FWHM

(a)      5.51°
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VSM and p-MOKE measurements
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(a)/FeCoB/MgO/cap as-deposited 

(b)/FeCoB/MgO/cap as-deposited 

(c)/FeCoB/MgO/cap as-deposited 
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 (a)/FeCoB/MgO/cap annealed 

 (b)/FeCoB/MgO/cap annealed 

 (c)/FeCoB/MgO/cap annealed 

 

 

M
/A

 [
e

m
u

/c
m

2
] 

1
0

-4

FeCoB nominal thickness [nm]

• 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
(a)/MgO/FeCoB/cap as-deposited

(a)/MgO/FeCoB/cap annealed

(c)/MgO/FeCoB/cap as-deposited

(c)/MgO/FeCoB/cap annealed
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 (a) 5Ta/10Ru/3Ta

 (c) 5Ta/20 Ru/5Ta
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Buffer (a) Δ = 63

Buffer (c) Δ = 32.5

Calculation of thermal stability factor:
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 (c) = 0.026 

 (a)i = 0.018 

 Linear Fit of Sheet1 B

 Linear Fit of A10Ru3Ta_B
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Damping calculated from

VNA-FMR

Step 5: Damping

measurements

Buffer (a) J = 1.25 MA/cm2

Buffer (c) J = 1.5 MA/cm2
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In order to optimize critical current and thermal stability

of MTJs we investigate Ta/Ru-based buffer influence

on the microstructure and magnetic properties. We

examine current-induced switching in nanopillars and

perform additional measurements of damping in order

to explain obtained results.

Aims

Ru (101)

Ta (110)

XRD texture measurements

Step 2: Microstructure


