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We present results of our analysis of the influence of spin pumping on spin waves in a double magnetic layers of YIG. NANOSP‘N
The magnetization dynamics has been modeled with the Landau-Lifshitz-Gilbert equation [1], and effect of interface nanospin.agh.edu.pl
perpendicular magnetic anisotropy has been included. Generally, spin pumping contributes to the intrinsic Gilbert ¢ ¢ ¢ ¢¢ ¢ ¢ ¢
damping. In case of two magnetic layers separated by a nonmagnetic metallic spacer, the spin current pumped into the ? ¢¢ QQ ¢ ¢ ¢
spacer leads to an additional dynamic coupling between the layers [2].
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The dynamics in the j-th layer shall be described by Landau-Lifshitz-Gilbert ~ &
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where M; = M;(r,t) is magnetization of the j-th layer, My; = |M;| is the 3 3]
saturated magnetization, «; is the Gilbert damping parameter of j-the e o
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We linearize LLG assuming M;(r, t) = My, + mj(r, t), where a thin nonmagnetic layer. Expect of magnetostatic field and interlayer e e
m;(r,t) = m;(r) et The dipolar-exchange field is exchange (RKKY) coupling, the magnetizations are dynamically coupled by 34 — 3.4} / / i
hi(r,t) = h;(r) e~t obeys the magnetostatic equations V x h;(r) = 0 due to the interlayer spin pumping (blue arrows) governed by the interlayer 32| spin pumping at the top interface 320 _ _
J\" J e J ’ mixing conductance ar — 172 i — spin pumping at the top interface o
and V - [hj(r) + m;(r)] = 0, which indicates that h;(r) = —V;(r), where 9 . gr. _ s 3l g,=10 "'m  ; S 3l — 107 2
;(r) is the magnetostatic scalar potential, which obeys Due to the inverse Spin Hall Effect in the top Pt layer a current voltage 3 = Srl m
along the layer results in the spin current Js (red line), which is absorbed at = 2.8, = 2.8
V245(r) — (8mj,X M amj,y) 5 the top interface. Moreover, when the top magnetization changes, the spin % 2.6/ z‘) 2.6/
Ox Oy current is emited through the top interface int Pt layer due to spin pumping = 54l S 94l
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The double layer has 4 interfaces. Parameter Abbreviation  Values ! ] ] ! ] ]
. Saturated magnetization M.. 1.56 x 105 A/m Four lower modes of the spin wave spectra in the parallel configuration as a
External interfaces ; ' in-
Gilbert damping " 6.7 » 105 function of in-plane wave vector q.
On the external interfaces Rado-Weertman boundary conditions have to be Exchanee parameter AJ, 417 x 1012 J/m? Left column: shows results without interfacial anisotropy.
fulfilled B P J ' Right column: show spin wave spectra with perpendicular anisotropy at the top
magnetic field Ho My/2 (P config.) interface.
2A;M; % 8%’ — 2K%; (M}.7;)(M; x 7)) 0 (AP config.) Imaginary parts of the eigenferquencies are shown in case of zero an nonzero
on; Layers’ thicknesses L; 100 nm spin pumping at the top interface. The real parts do not change with g_,.
" h & ; dM; —4 /3 : In the calculations above, the interlayer mixing conductance was zero.
—JsM;j x é; x M+ 47TJ My x dtj =0 Interlayer coupling A1 ARl = s conflg.)_ d J
—5 x 107* J/m3 (AP config.)

where j = 1,2. K®; is the interfacial anisotropy parameter, g;; is the mixing
conductance on the j-th external interface, and f; is normal vector to the

j-the external interface. J; is the spin current absorbed at the interface. Real and imaginary parts of the spin wave eignefrequencies in parallel configuration as a Real and imaginary parts of the spin wave eignefrequencies in
function of interlayer exchange stiffness parameter for two dirrerent interlayer mixing parallel configuration as a function of interlayer mixing
The mixing conductance, spin current and interfacial anisotropy are conductances. Since the real parts (energies) are not influenced by the interlayer mixing conductance. Real parts do not depend on g. Imaginary parts
assumed the be nonzero only on the top interface. conductance, the imaginary parts (spin wave life times) changes at higher g.. Interestingly, the of the acoustic spin waves change just slightly in comparison to
Internal Interfaces optical spin waves seems to be stronger influenced by the interlayer dynamic coupling. the ones of the optical spin waves.
On the internal interfaces the Hoffman boundary conditions hold 9
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where j,i = 1,2, and j # i. K'; is the interfacial anisotropy parameter, and Y o ¥ 3t
n; is normal vector to the j-th internal interface, while g; is the mixing 2/ 2/ 7L |
conductance of both internal interfaces g, ! = gral - gral. The last term )
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Finally, the tangential component of h;(r) and the normal component of : g F= 9 P
h(r) + m(r) must be continuous across the interfaces. This leads to 4 6 optical 7| ootical 8 — :
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The linearized LLG together with the Maxwell equations have solutions in £ ’ £ 3 = 3
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where g = (qy, q,) is the in-plane wave vector, and s = (y, z) is the
in-plane coordinate, and
Similar effects as in the case of parallel configuration can be also observed in the antiparallel one.
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mjx(x) = mjx €%, mj,(x) = mj, e, 1hj(x) = ;e In this case, the different variation of the spin wave life times with g, is even more pronounced.
In case of Voigt geometry (when g, = 0) they have nontrivial solutions for
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Inserting the latter solution into the boundary conditions we obtain 12 x 12 S . = S
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matrix, M, which determinant becomes zero at the resonance frequency = = u = 4
det M(w;) =0 ' ' ' ' : ' ' '
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