

Magnetization Dynamics in Heat Currents

Jean-Philippe Ansermet Ecole Polytechnique Fédérale de Lausanne

Group members, Spintronics

Post-docs

Sylvain Bréchet, theory
 Pedro Saraiva ESR

Present grad students

E. Papa, inductive FMR in SSE geometry
 Antonio Vetro TMR and spin valves
 F. Comandè OMAR and ESR of Organic LED

Collaborations, recent PhD, intern

Prof. Stewart Barnes
 Prof. T. Stobiecki, Prof. J. Dubowik
 Arndt von Bieren
 Haiming YU
 Uni. of Florida, Miami
 Poland-CH collaboration
 Nernst imaging of magnetization domains
 Spin valves, switching, Pekin Uni.

Funding

Swiss NSF,

Joint research programs : Poland SCOPES : Moldova + Romania

Interraction of heat current and magnetization

Outline

- Motivation and challenges
- · Quasi-static effects in metallic spin valves
- FMR of metallic spin valves in nanowires
- FMR of YIG crystals

Thermodynamics of irreversible processes (for charges with (+) or (-) *label*)

$$\begin{pmatrix} \mathbf{j}_{s} \\ \mathbf{j}_{+} \\ \mathbf{j}_{-} \end{pmatrix} = - \begin{pmatrix} L_{ss} & L_{s+} & L_{s-} \\ L_{+s} & L_{++} & L_{+-} \\ L_{-s} & L_{-+} & L_{--} \end{pmatrix} \begin{pmatrix} \nabla T \\ \nabla \mu_{+} - q_{+} \mathbf{E} \\ \nabla \mu_{-} - q_{-} \mathbf{E} \end{pmatrix}$$

L. Gravier et al, PRB 2006

Heat-driven spin torque

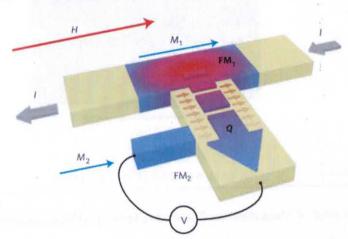
$$\begin{bmatrix} \boldsymbol{j}_{s} \\ \boldsymbol{j}_{+} \\ \boldsymbol{j}_{-} \end{bmatrix} = - \begin{pmatrix} \kappa & \sigma_{-} \varepsilon_{-} & \sigma_{+} \varepsilon_{+} \\ \sigma_{+} \varepsilon_{+} & \frac{\sigma_{+}}{q} & 0 \\ \sigma_{-} \varepsilon_{-} & 0 & \frac{\sigma_{-}}{q} \end{pmatrix} \begin{pmatrix} \nabla T \\ \nabla \mu_{+} \\ \nabla \mu_{-} \end{pmatrix} \qquad \boldsymbol{j}_{p} = \boldsymbol{j}_{+} - \boldsymbol{j}_{-}$$

$$\boldsymbol{j}_p = \boldsymbol{j}_+ - \boldsymbol{j}_-$$

$$\sigma_{\pm} = \frac{\sigma}{2}(1 \pm \beta)$$
 $\varepsilon_{\pm} = \varepsilon(1 \pm \eta)$

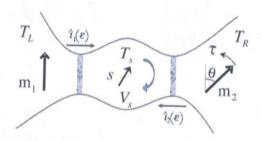
$$\boldsymbol{j}_{\scriptscriptstyle p} = -\,\sigma\varepsilon\,(\eta-\beta)\,\nabla\,T$$

away from interfaces ($abla \mu_{\scriptscriptstyle +} =
abla \mu_{\scriptscriptstyle -}$)


S. Brechet, JPA, PPS, 1862-6270 (2011)

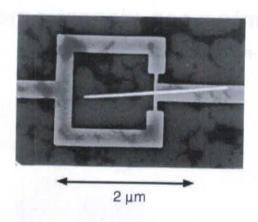
nature physics

PUBLISHED ONLINE: 19 SEPTEMBER 2010 | DOI: 10.


Thermally driven spin injection from a ferromagnet into a non-magnetic metal

A. Slachter*, F. L. Bakker, J-P. Adam and B. J. van Wees

Thermal spin torque predicted in 2007


M. Hatami, G.E.W. Bauer, Q. Zhang, P.J. Kelly, Phys. Rev. Lett. 99, 066603 (2007)

$$\tau \sim P\Delta V + P'S\Delta T$$

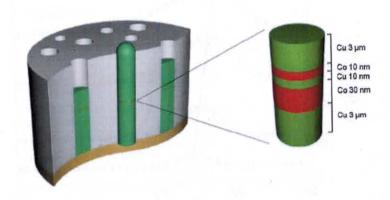
Need large heat currents but...

must avoid large temperature changes!

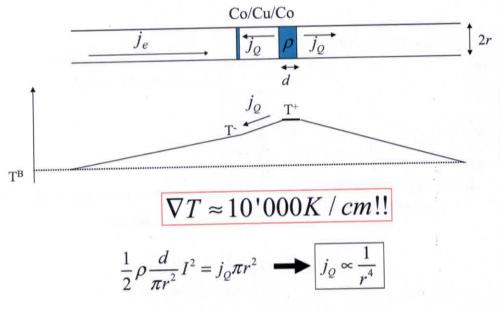
VOLUME 77, NUMBER 9

PHYSICAL REVIEW LETTERS

26 AUGUST 1996

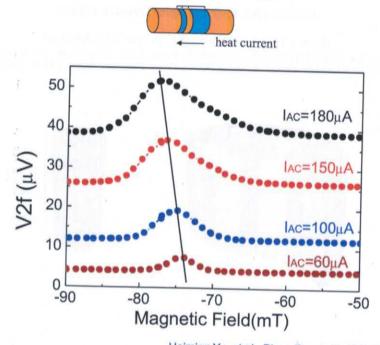

Nucleation of Magnetization Reversal in Individual Nanosized Nickel Wires

W. Wernsdorfer, 1,2 B. Doudin, D. Mailly, K. Hasselbach, A. Benoit, J. Meier, J.-Ph. Ansermet, and B. Barbara²

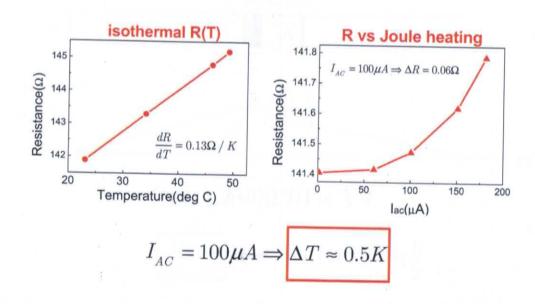

Evidence for Thermal Spin-Transfer Torque

Haiming Yu, ^{1,2} S. Granville, ¹ D. P. Yu, ² and J.-Ph. Ansermet ¹

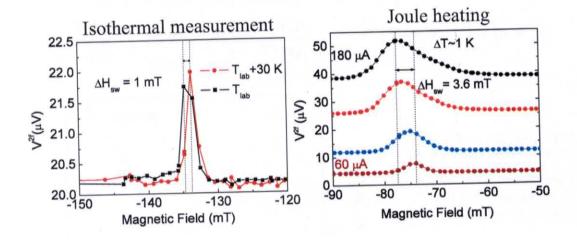
Ecole Polytechnique Fédérale de Lausanne, IPMC, Station 3, CH-1015 Lausanne-EPFL, Switzerland
²State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, People's Republic of China



Joule heating spin valves in a nanowire

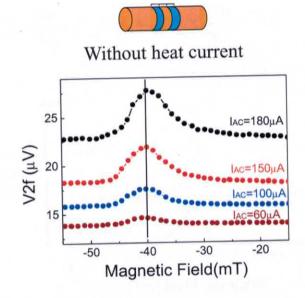

Nanowires ideal for large j_Q

Heat current (not temperature) changes the switching field



Haiming Yu, et al., Phys. Rev. Lett. 104, 146601 (2010)

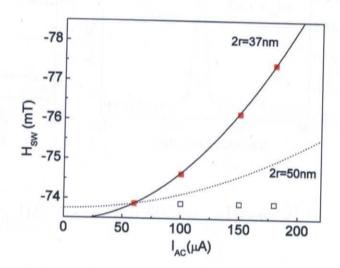
Calibrating the temperature rise


change of switching field NOT due to ΔT

$$1~{\rm K} \rightarrow \Delta {\rm H}_{_{SW}} = 0.03~{\rm mT}$$

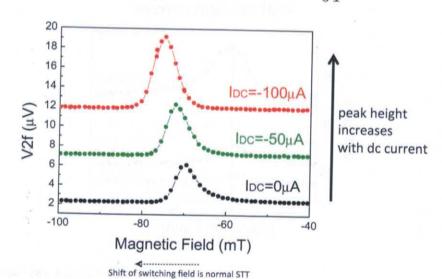
$$\Delta \mathbf{H}_{\scriptscriptstyle SW} = 100 \times \Delta T$$
 effect

Other check experiment: symmetric spin-valve


Heat-current and charge-current driven spin torques compared :

$$j_{\scriptscriptstyle m} = c \left(\nabla \, V - S_{\scriptscriptstyle eff} \nabla \, T \right)$$

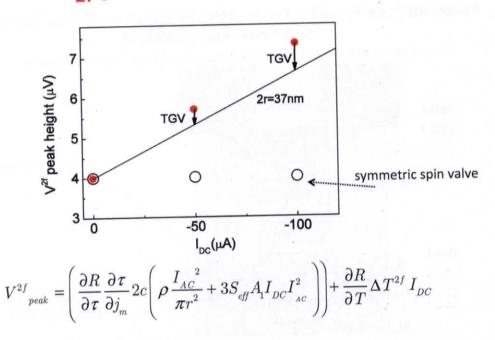
$$\frac{\Delta H_{sw}^{TST}}{\Delta H_{sw}^{STT}} = \frac{\tau_{TST}}{\tau_{STT}} = \frac{j_{m,TST}}{j_{m,STT}} = \frac{S_{eff} \nabla T}{\nabla V}$$


From 3-current model, values measured independently

J. Dubois and J.-Ph. Ansermet, Phys. Rev. B 78, 184430 (2008).

V2f peak height vs dc current

$$V = R(\tau,T)I \qquad \qquad V^{2f} = \frac{\partial R}{\partial \tau} \Big(\tau^f_{_{STT}} I_{_{AC}} + \tau^{2f}_{_{TST}} I_{_{DC}} \Big) + \frac{\partial R}{\partial T} \Delta T_{_{2f}} I_{_{DC}}$$


V2f peak height

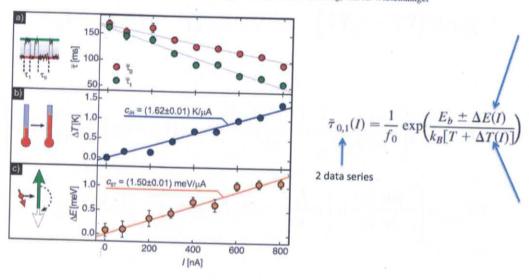
(just a 2nd order development, sorry)

$$\begin{split} V &= R \left(\tau, T \right) I \qquad \Delta V = I \Bigg[\Bigg(\frac{\partial R}{\partial \tau} \frac{\partial \tau}{\partial j_m} j_m \Bigg) + \frac{\partial R}{\partial T} \Delta T^{2f} \Bigg] \\ \\ j_m &= 2c \Big(\nabla V - S_{eff} \nabla T \Big) \qquad \nabla T = A_1 I^2 \qquad I = I_{AC} + I_{DC} \end{split}$$

$$\begin{split} \Delta V = & \left(I_{AC} + I_{DC}\right) \Bigg[-\frac{\partial R}{\partial \tau} \frac{\partial \tau}{\partial j_{m}} 2c \Bigg(\rho \frac{\left(I_{AC} + I_{DC}\right)}{\pi r^{2}} + S_{\textit{eff}} A_{\text{l}} \left(I_{AC} + I_{DC}\right)^{2} \Bigg) + \frac{\partial R}{\partial T} \Delta T^{2f} \Bigg] \\ V^{2f}_{\textit{peak}} = & \left(-\frac{\partial R}{\partial \tau} \frac{\partial \tau}{\partial j_{m}} 2c \Bigg(\rho \frac{I_{AC}^{-2}}{\pi r^{2}} + 3S_{\textit{eff}} A_{\text{l}} I_{DC} I_{AC}^{2} \right) \Bigg) + \frac{\partial R}{\partial T} \Delta T^{2f} I_{DC} \end{split}$$

V_{2f} peak height vs. I_{dc}

Other studies

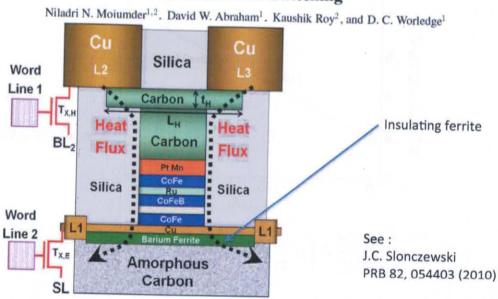

PRL 107, 186601 (2011)

PHYSICAL REVIEW LETTERS

week ending 28 OCTOBER 2011

Joule Heating and Spin-Transfer Torque Investigated on the Atomic Scale Using a Spin-Polarized Scanning Tunneling Microscope

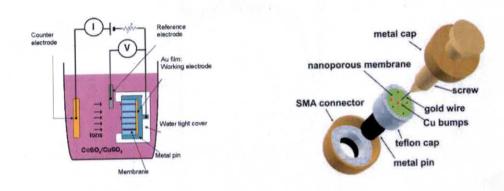
S. Krause, * G. Herzog, A. Schlenhoff, A. Sonntag, and R. Wiesendanger



Other studies

2016

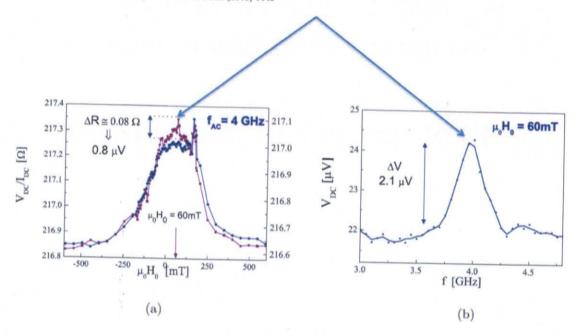
IEEE TRANSACTIONS ON MAGNETICS, VOL. 48, NO. 6, JUNE 2012


Magnonic Spin-Transfer Torque MRAM With Low Power, High Speed, and Error-Free Switching

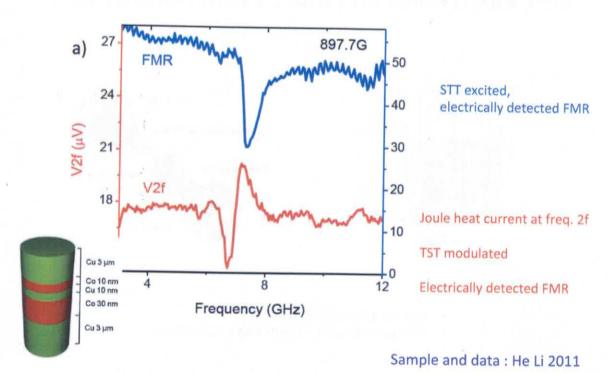
Effect of heat current on Magnetization Resonance

FMR of spin valves in nanowires

GHz electronics on (short-lived) nanowires?

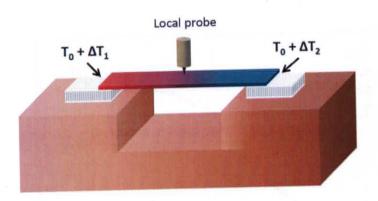


- One sample, many spin vavles!
- Driving microwave currents into a nanowire!


Lithography-free study of spin torque

E. Murè*, N. Bizière, J.-Ph. Ansermet

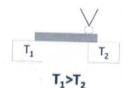
Journal of Magnetism and Magnetic Materials 322 (2010) 1443

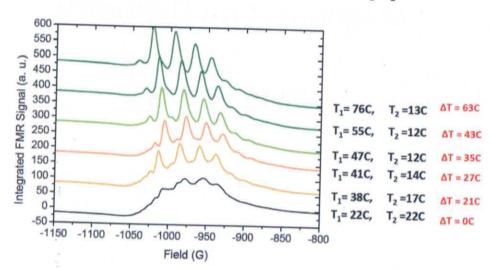


Heat current modulated FMR, spin valves

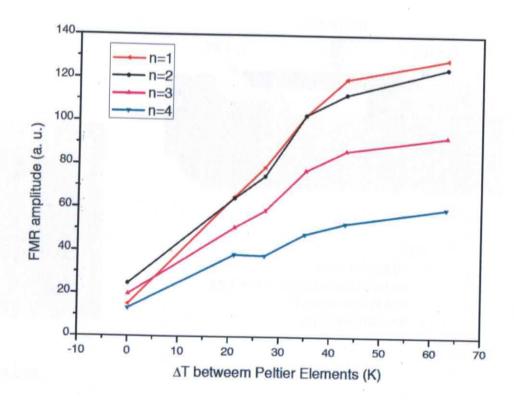
Effect of heat current on Magnetization *Dynamics*

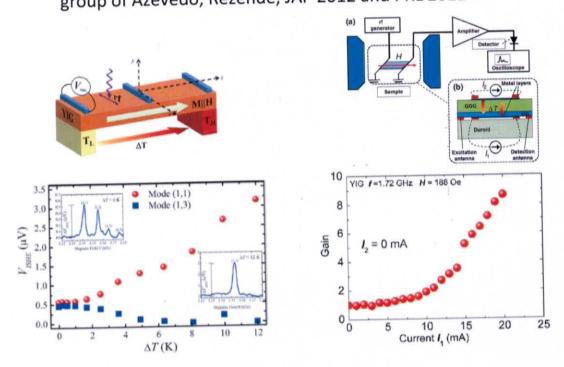
FMR in YIG




YIG

- 50 micron thick
- on sapphire substrate, 7 mm long
- two Peltier elements
- heat-sinking block





FMR amplitude Versus ΔT

YIG group of Azevedo, Rezende, JAP 2012 and PRL 2011

Interraction of heat current and magnetization

- Thermodynamics 3-current model: heat-driven spin currents in metals
- Thermal spin torque in spin valve (quasi-static)
 The 3-current model account for two independent observations
- FMR in metals modulation by heat in spin valves
- FMR in YIG
 Narrowing of the FMR at the cold end

Electromagnetic pumping of spin waves

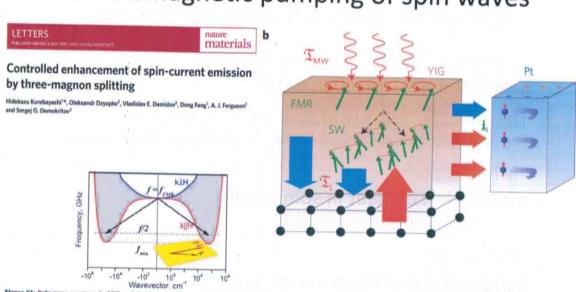


Figure S1: Spin-wave spectrum is YIG and the three magnon splitting. There are available spin-wave states depending on the relative orientation of the applied magnetic field H and momentum of spin-wave k. The FMR mode is excited by applying the microwave magnetic field with a frequency $f(-f_{\rm SMR})$. The arrows represent the three magnon splitting process that generates two spin-waves with θT from the FMR mode. This process starts when θT is greater than the minimum frequency of the spectrum $f_{\rm min}$.

See also:

- Suhl JAP 1957, J. Phys. Chem Sol 1957