Temperature study of spin torque efficiencies in Ta/CoFeB/MgO

with perpendicular magnetic anisotropy

Monika Cecot¹, Ł. Karwacki², W. Skowroński¹, J. Kanak¹, J. Wrona³, A. Żywczak⁴, J. Barnaś^{2,5} and T. Stobiecki¹

¹ AGH University of Science and Technology, Department of Electronics, Kraków, Poland ² Faculty of Physics, Adam Mickiewicz University, Poznań, Poland ³ Singulus Technologies AG, Hanauer Landstrasse 103, 63796 Kahl am Main, Germany

⁴ AGH University of Science and Technology, Academic Centre of Materials and Nanotechnology, Kraków, Poland

⁵ Institute of Molecular Physics, Academy of Sciences, Poznań, Poland

MOTIVATION

Comprehensive approach to spin transfer torque via spin Hall effect in Ta/CoFeB requires precise characterization of Ta microstructure, examination of Ta/CoFeB interface and Ta layer influence on magnetic properties, which leads to extension of spin diffusion model:

Effective spin Hall angle

anomalous Hall angle of the $\Theta_{SH} \equiv \Theta_{SH}(\theta_{SH}^N, \theta_{SH}^I, \theta_{AH}^F)$ ferromagnetic metal

spin Hall angle of the interfacial layer

SAMPLES CHARACTERIZATION

 d_N Ta/ 0.9 $Co_{40}Fe_{40}B_{20}$ / 5 MgO/ 1 Ta $d_N = 5, 10, 15$ [nm] Sputtering deposition method, 20 min post-annealing in 330° XRD: amorphous 5 nm Ta, β -phase in 10 nm and 15 nm of Ta XRR: rough Ta/CoFeB interface $\lambda_{Ta/CFB} \sim 0.57 - 0.51$ nm The highest resistivity for amorphous 5 nm Ta

Magnetic properties: Perpendicular magnetic anisotropy, Bloch low temperature dependence of spontaneous magnetization M, characteristic minimum of saturation magnetization M_S for $d_N \approx 3 nm$

Significant magnetic dead layer (DL) thickness ≈ 0.55-0.39 nm

HARMONIC HALL VOLTAGE MEASUREMENTS

J. Sinha et al. APL **102**, 242405 (2013) Ta(0-10 nm)/ $Co_{20}Fe_{60}B_{20}$ (1 nm) J. Kim et al. PRB **89**, 174424 (2014) Ta(1.3 nm)/ $Co_{20}Fe_{60}B_{20}$ (1 nm) X. Qiu et al. Scientific Reports 4, 4491 (2014) Ta(2 nm)/ $Co_{40}Fe_{40}B_{20}$ (0.8 nm) C. Avci et al. PRB 89, 214419 (2014) Ta(3 nm)/Co₆₀Fe₂₀B₂₀ (0.9 nm) L. Liu et al. (after C. Avci) Ta(6 nm)/CoFeB(1 nm) C. Zhang et al. Appl. Phys. Lett. 103, 262407 (2013) Ta(2.5 nm)/CoFeB(1 nm)

SPIN TORQUE EFFICIENCIES

CONCLUSION

Longitudinal ((anti)damping-like DL) and transverse (field-like FL) components of spin-orbit torque-induced effective field:

$$\Delta H_{DL, FL} = -2 \frac{\partial V_{2f} / \partial H_{DL,FL}}{\partial^2 V_{1f} / \partial H_{DL,FL}^2}$$

$$\frac{\Delta R_{PHE}}{\Delta R_{AHE}} < 3 \%$$

(Anti)damping-like and field-like torque efficiencies:

$$\xi_{\text{DL, FL}} = \frac{\Delta H_{DL,FL} \cdot 2e\mu_0 M_S d_F}{J_N \cdot \hbar}$$

ANOMALOUS HALL EFFECT

Anomalous Hall angle as a ratio of AH resistivity and longitudinal resistivity :

 $\theta_{AH}^F = \frac{\rho_{AHE}}{\rho_{xx}} < 0.5 \%$

 d_{N} (nm)

EXTENTION TO SPIN DIFFUSION MODEL

Extended spin diffusion model allows to obtain the temperature dependences of θ_{SH}^N and θ_{SH}^I components.

 $2e\rho_N \quad \partial z$ nonmagnetic metal (N) and in the interface layer (I): $\theta_{SH}^{I} = \mathbf{\alpha} \cdot \theta_{SH}^{N}$ $j_{s}^{I}(z) = -\frac{1}{2\alpha \sigma} \frac{\partial \mu_{s}^{I}(z)}{\partial z} - \theta_{SH}^{I} J_{N\widehat{y}}$ (Anti)damping-like component: $+ \alpha [tanh(\frac{1}{2\lambda})]$ $tanh\left(\frac{d_N}{2\lambda_N}\right)csch\left(\frac{d_N}{\lambda_N}\right)$ $coth\left(\frac{d_N}{\lambda_N}\right)$ $\frac{-\frac{1}{\rho_N \lambda_N}}{(1+g_r)^2 + g_i^2} \frac{g_r (1+g_r) + g_i^2}{(1+g_r)^2 + g_i^2},$ $\frac{\hbar}{2\rho} \frac{J_N}{\mu_0 M_c d_r} \theta_{SH}^N$ ΔH_{DL} $coth\left(\frac{d_N}{d_N}\right)coth$ Field-like component: $tanh\left(\frac{d_N}{2\lambda_N}\right)csch$ $\frac{1}{2}$)+ α [tanh($\frac{\alpha_1}{2\lambda_1}$)coth $\rho_N \lambda_N^{\perp}$ $\frac{\hbar}{2e} \frac{J_N}{\mu_0 M_S d_F} \Theta_{SH}^N$ g_i $\Delta H_{FL} =$ $\overline{(1+g_r)^2+g_i^2}$ $coth\left(\frac{d_N}{\lambda_N}\right)coth$ $g_{r,i} = 2G_{r,i} \frac{\operatorname{coth}\left(\frac{d_N}{2\lambda_N}\right) \operatorname{coth}\left(\frac{d_N}{2\lambda_N}\right)}{\frac{1}{2\lambda_N} \operatorname{coth}\left(\frac{d_N}{\lambda_N}\right)} + \frac{1}{2\lambda_N} + \frac{1}{2\lambda_N} \operatorname{coth}\left(\frac{d_N}{\lambda_N}\right) + \frac{1}{2\lambda_N} \operatorname{cot$ Real and imaginary parts of $G_r(T) \sim \text{const},$ spin-mixing conductance $G_i(\mathsf{T}) \sim \mathsf{T}$

This work is partially supported by the NANOSPIN under Grant PSPB-045/2010 from Switzerland through the Swiss Contribution, by National Science Center, Poland, Grant No. 2015/17/D/ST3/00500 and No. DEC-2012/05/E/ST7/00240 and in part by the AGH University Dean's Grant No. 15.11.230.269.